Make your own free website on Tripod.com

2.5.3.2    Aproximación para la ecuación de Einstein.
Hidráulica fluvial. Conceptos generales sobre morfología, dinámica y el transporte de sedimentos en ríos aluviales. Ecuaciones y métodos de uso más extendido para su evaluación y cálculo.


[ir a Índice General]

[ir a Contenido General]

[go to General Index]

[go to General Content]

                                    

 

2.5.3.2    Aproximación para la ecuación de Einstein.

 

Einstein (1950) asumió que b = 1 y k = 0.4.  Reemplazando U* con U´*, la velocidad de corte debida a la rugosidad del grano sería:

 

   (Ecuación 2.77)

 

La ecuación de carga suspendida es:

 

   (Ecuación 2.78)

Donde:

qsw =  Carga en suspensión. (kg/seg.m)

Ca =   Concentración del sedimento en peso seco, a una distancia y = a.

a =    Espesor de la capa del transporte de fondo. (m)

D =    Profundidad de la lámina de agua. (m)

D =    d65/x (adim.)

x =    Factor de corrección, dado en la figura 3.9 (Yang)

I1 =   

I2 =   

 

Donde:

E = a/D. (adim.)

Z = Valor obtenido de las figuras 5.7 y 5.8 del libro de Yang. (Págs. 131 y 132), (Referencia: Sediment Transport, Theory and practice; Chih Ted Yang 1996. Figura 5.7 y 5.8 Págs. 131 y 132.).

 

 


Escuela Colombiana de Ingeniería. Centro de Estudios Hidráulicos y Ambientales.
Si tiene comentarios o inquietudes acerca de este Sitio-Web, por favor enviar un e-mail a:
gregoriomarin@engineer.com